Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.155
Filtrar
1.
J Chromatogr A ; 1721: 464818, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38564929

RESUMO

Comprehensive two-dimensional liquid chromatography (LCxLC) represents a valuable alternative to conventional single column, or one-dimensional, liquid chromatography (1D-LC) for resolving multiple components in a complex mixture in a short time. However, developing LCxLC methods with trial-and-error experiments is challenging and time-consuming, which is why the technique is not dominant despite its significant potential. This work presents a novel shortcut model to in-silico predicting retention time and peak width within an RPLCxRPLC separation system (i.e., LCxLC systems that use reversed-phase columns (RPLC) in both separation dimensions). Our computationally effective model uses the hydrophobic-subtraction model (HSM) to predict retention and considers limitations due to the sample volume, undersampling and the maximum pressure drop. The shortcut model is used in a two-step strategy for sample-dependent optimization of RPLCxRPLC separation systems. In the first step, the Kendall's correlation coefficient of all possible combinations of available columns is evaluated, and the best column pair is selected accordingly. In the second step, the optimal values of design variables, flow rate, pH and sample loop volume, are obtained via multi-objective stochastic optimization. The strategy is applied to method development for the separation of 8, 12 and 16 component mixtures. It is shown that the proposed strategy provides an easy way to accelerate method development for full-comprehensive 2D-LC systems as it does not require any experimental campaign and an entire optimization run can take less than two minutes.


Assuntos
Cromatografia de Fase Reversa , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos
2.
Anal Chem ; 96(15): 5860-5868, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38567987

RESUMO

Supramolecular hydrogels formed through polymer-nanoparticle interactions are promising biocompatible materials for translational medicines. This class of hydrogels exhibits shear-thinning behavior and rapid recovery of mechanical properties, providing desirable attributes for formulating sprayable and injectable therapeutics. Characterization of hydrogel composition and loading of encapsulated drugs is critical to achieving the desired rheological behavior as well as tunable in vitro and in vivo payload release kinetics. However, quantitation of hydrogel composition is challenging due to material complexity, heterogeneity, high molecular weight, and the lack of chromophores. Here, we present a label-free approach to simultaneously determine hydrogel polymeric components and encapsulated payloads by coupling a reversed phase liquid chromatographic method with a charged aerosol detector (RPLC-CAD). The hydrogel studied consists of modified hydroxypropylmethylcellulose, self-assembled PEG-b-PLA nanoparticles, and a therapeutic compound, bimatoprost. The three components were resolved and quantitated using the RPLC-CAD method with a C4 stationary phase. The method demonstrated robust performance, applicability to alternative cargos (i.e., proteins) and was suitable for composition analysis as well as for evaluating in vitro release of cargos from the hydrogel. Moreover, this method can be used to monitor polymer degradation and material stability, which can be further elucidated by coupling the RPLC method with (1) a multi-angle light scattering detector (RPLC-MALS) or (2) high resolution mass spectrometry (RPLC-MS) and a Fourier-transform based deconvolution algorithm. We envision that this analytical strategy could be generalized to characterize critical quality attributes of other classes of supramolecular hydrogels, establish structure-property relationships, and provide rational design guidance in hydrogel drug product development.


Assuntos
Hidrogéis , Nanopartículas , Hidrogéis/química , Cromatografia de Fase Reversa/métodos , Polietilenoglicóis/química , Aerossóis
3.
Methods Mol Biol ; 2788: 67-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656509

RESUMO

Derivatization of monosaccharides with 1-phenyl-3-methyl-5-pyrazolone (PMP) introduces two chromophores per sugar molecule. Their separation on a superficially porous C18 reverse-phase column, using common liquid chromatography equipment, results in short analysis times (under 20 min) and high sensitivity (limit of quantitation 1 nmol). This method allows for complex monosaccharide mixtures to be separated and quantified using a reasonably simple and safe derivatization procedure.


Assuntos
Cromatografia de Fase Reversa , Monossacarídeos , Cromatografia de Fase Reversa/métodos , Monossacarídeos/química , Monossacarídeos/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrofotometria Ultravioleta/métodos , Edaravone/química , Antipirina/análogos & derivados , Antipirina/química
4.
J Toxicol Sci ; 49(4): 127-137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556350

RESUMO

The octanol/water partition coefficient P (logP) is a hydrophobicity index and is one of the determining factors for the pharmacokinetics of orally administered substances because it influences membrane permeability. To illustrate the wide-ranging variety of compounds in the chemical space, a two-dimensional data plot consisting of 25 blocks was previously proposed based on a substance's in silico chemical descriptors. The logP values of approximately 200 diverse chemicals (test plus reference compounds covering all 25 blocks of the chemical space) were estimated experimentally using retention times in reverse-phase liquid chromatography; these values were compared with those of authentic reference compounds with established logP values (available for 17 of 60 reference substances in the Organization for Economic Co-operation and Development Test Guideline 117). The logP values of 140 of 165 chemicals successfully estimated using four different mobile phase conditions (pH 2, 4, 7, and 10 for molecular forms) correlated significantly with those calculated using the in silico packages ChemDraw and ACD/Percepta (r > 0.72). Although substances that neighbored authentic compounds in the chemical space had precisely correlated logP values estimated experimentally and in silico, some compounds that were more distant from authentic substances showed lower logP values than those estimated in silico. These results indicate that additional authentic reference materials with wider ranging chemical diversity and their logP values from reverse-phase liquid chromatography should be included in the international test guidance to promote simple and reliable estimation of octanol/water partition coefficients, which are important determinant factors for the pharmacokinetics of general chemicals.


Assuntos
Cromatografia de Fase Reversa , Água , Cromatografia de Fase Reversa/métodos , Água/química , Octanóis/química , Interações Hidrofóbicas e Hidrofílicas , Cromatografia Líquida de Alta Pressão/métodos
5.
J Chromatogr A ; 1721: 464824, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38522405

RESUMO

Two-dimensional liquid chromatography (2D-LC), and in particular comprehensive two-dimensional liquid chromatography (LC×LC), offers increased peak capacity, resolution and selectivity compared to one-dimensional liquid chromatography. It is commonly accepted that the technique produces the best results when the separation mechanisms in the two dimensions are completely orthogonal; however, the use of similar separation mechanisms in both dimensions has been gaining popularity as it helps avoid difficulties related to mobile phase incompatibility and poor column efficiency. The remarkable advantages of using reversed phase in both dimensions (RPLC×RPLC) over other separation mechanisms made it a promising technique in the separation of complex samples. This review discusses some physical and practical considerations in method development for 2D-LC involving the use of RP in both dimensions. In addition, an extensive overview is presented of different applications that relied on RPLC×RPLC and 2D-LC with reversed phase column combinations to separate components of complex samples in different fields including food analysis, natural product analysis, environmental analysis, proteomics, lipidomics and metabolomics.


Assuntos
Cromatografia de Fase Reversa , Proteômica , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos
6.
J Chromatogr A ; 1721: 464819, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38537485

RESUMO

Silanophilic interactions are a primary contributor to peak tailing of acidic pharmaceutical compounds, thus a thorough understanding is especially important for reversed-phase liquid chromatography (RPLC) method development. Herein, a sulfinic acid compound that exhibited severe peak tailing in RPLC with acidic mobile phases was carefully studied. Results indicated that the neutral protonated form of the sulfinic acid is involved in the strong interaction that leads to peak tailing, but that tailing can be mitigated with a blocking effect achieved through use of acetic acid modifier in the mobile phase. Peak tailing was also observed with other structurally-similar sulfinic acids and carboxylic acids but was, in general, less severe with the latter. The Hydrophobic Subtraction Model (HSM) was applied to six commercial C18 columns that exhibited different tailing behaviors for the sulfinic acid compound in attempts to identify key sites of interaction within the stationary phase. A combination of heated acid column wash experiments and density functional theory (DFT) calculations indicate that the differential interactions of the acids with vicinal silanol pairs in the stationary phase play a major role in peak tailing.


Assuntos
Cromatografia de Fase Reversa , Ácidos Sulfínicos , Cromatografia de Fase Reversa/métodos , Ácidos Carboxílicos , Indicadores e Reagentes , Ácido Acético , Cromatografia Líquida de Alta Pressão/métodos
7.
J Chromatogr A ; 1720: 464793, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38484639

RESUMO

A generic performance comparison strategy has been developed to evaluate the impact of mobile-phase additives (ion-pairing agent / counter ion systems), distinct stationary phases on resulting resolving power, and MS detectability of oligonucleotides and their critical impurities in gradient IP-RPLC. Stationary-phase considerations included particle type (core-shell vs. fully porous particles), particle diameter, and pore size. Separations were carried out at 60°C to optimize mass transfer (C-term). The incorporation of an active column preheater mitigated thermal mismatches, leading to narrower peaks and overcoming peak splitting. Acetonitrile as organic modifier outweighed methanol in terms of peak-capacity generation and yielded a 30% lower back pressure. Performance screening experiments were conducted varying ion-pairing agents and counter ions, while adjusting gradient span achieved an equivalent effective retention window. Hexafluoromethylisopropanol yielded superior chromatographic resolution, whereas hexafluoroisopropanol yielded significantly higher MS detection sensitivity. The 1.7 µm core-shell particle columns with 100 Å pores provided maximum resolving power for small (15-35 mers) oligonucleotides. Sub-min analysis for 15-35 polyT ladders was achieved operating a 50 mm long column at the kinetic performance limits. High-resolution separations between a 21-mer modified RNA sequence oligonucleotides and its related (shortmer and phosphodiester) impurities and complementary strand were obtained using a coupled column set-up with a total length of 450 mm.


Assuntos
60705 , Oligonucleotídeos , Oligonucleotídeos/análise , Cromatografia de Fase Reversa/métodos , Espectrometria de Massas , Íons , Cromatografia Líquida de Alta Pressão/métodos
8.
Anal Methods ; 16(15): 2278-2285, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38525815

RESUMO

Sterols are unsaponifiable lipids resulting from plant metabolism that exhibit interesting bioactive properties. Microalgae are a major source of specific phytosterols, most of which are still not fully characterized. The similarity in sterol structures and the existence of positional isomers make the separation of phytosterols challenging. A method was developed based on an offline two-dimensional (2D) system, reversed-phase liquid chromatography (RPLC)-supercritical fluid chromatography (SFC)/quadrupole time-of-flight (Q-ToF) mass spectrometry, for the identification of sterols in microalgae. Subsequent positive-mode MS/MS was used to confirm the identified phytosterols. The 2D chromatogram exhibited a pattern related to the positions of the double bonds, which were confirmed by standard injection, enabling structural elucidation. The analysis of the unsaponifiable fraction of two algae, namely Scenedesmus obliquus, a freshwater microalgae, and Padina pavonica, a marine macroalgae, highlighted the ability of the method to distinguish a large number of sterol isomers.


Assuntos
Cromatografia com Fluido Supercrítico , Microalgas , Fitosteróis , Cromatografia de Fase Reversa/métodos , Fitosteróis/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia com Fluido Supercrítico/métodos , Esteróis , Plantas
9.
J Chromatogr A ; 1719: 464766, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428339

RESUMO

Chromatographers often employ fully aqueous mobile phases to retain highly polar compounds in reversed-phase liquid chromatography (RPLC). However, when the flow rate is interrupted, either accidentally or intentionally, a substantial loss in retention occurs due to the spontaneous dewetting of water from the hydrophobic surface of conventional RPLC-C18 particles. Previous studies have shown that maintaining a low C18 surface coverage (approximately 1.5 µmol/m2) can mitigate water dewetting by increasing chain disorder, facilitating the intercalation of water clusters between the C18-bonded chains, and keeping the mesopores wetted. In this research, we explore the potential and additional benefits of using two-component surface bonding materials (C8/C18 and PhenylHexyl (PhHx)/C18) at a constant and low total surface coverage of 1.51 ± 0.15 µmol/m2. We synthesized seven one- and two-component modified silica particles with a volume average particle size of 5.22 µm and an average mesopore size of 104 Å. The surface coverage was increased from 0 to 0.54, 1.00, and to 1.66 µmol2 for C8 chains and from 0 to 0.52, 0.70, and to 1.65 µmol2 for PhHx ligands. To prevent interactions between water and any unreacted silanols, all seven derivatized particles were heavily endcapped with trimethylsilane (TMS) reagent. The fraction of the surface area remaining in contact with water was determined by measuring the retention times of weakly (thiourea) and strongly (thymine) retained compounds at intervals of 1, 2, 4, 8, 16, 32, and 64 minutes following the cessation of flow. Two distinct column temperatures, 24°C and 60°C, were employed in the experiments. Retention losses were found to be minimized in the presence of a small quantity of C8 chains (less than 40% of the total surface coverage). Additionally, it is essential to consider substantial fractions of PhHx chains, as long as the presence of the PhHx ligand does not significantly impact retention and selectivity. Combining mixed RPLC bondings with a low total surface coverage of approximately 1.5 µmol/m2 emerges as a viable solution for further minimizing retention loss in standard C18-bonded RPLC columns, particularly within the surface coverage range of 2.5-3.0 µmol/m2.


Assuntos
Cromatografia de Fase Reversa , Dióxido de Silício , Cromatografia de Fase Reversa/métodos , Dióxido de Silício/química , Cromatografia Líquida , Água/química , Interações Hidrofóbicas e Hidrofílicas
10.
J Chromatogr A ; 1718: 464725, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364617

RESUMO

Online comprehensive two-dimensional liquid chromatography (online LC x LC) has become increasingly popular. Among the different chromatographic modes that can be combined, hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RPLC) are particularly interesting because they offer a high degree of orthogonality. However, this combination remains complex due to the incompatibility of the solvents in the two dimensions. To avoid this problem, it is possible to dilute the first dimension (1D) effluent with (zdilution -1) volumes of a weaker solvent added to one volume of 1D-effluent, where zdilution represents the extent to which the fraction volume has been multiplied. This can be done using either active solvent modulation technology or an additional pump, prior to the second dimension analysis. The objective of this study was to develop theoretical models to predict whether or not dilution can be effective, and, if so, what is the minimum zdilution value required. This approach is based on the calculation of the ratio (called xdilution) between the peak standard deviation due to the injection process and the peak standard deviation in the absence of extra-column dispersion. xdilution was calculated from theoretical relationships and plotted as a function of zdilution, to predict the value required to obtain good peak shapes for the compound of interest. The maximum xdilution value was found to be of the order of 1 for chromatographically acceptable peak shapes. The proposed theoretical approach was experimentally validated on a number of representative small molecules and peptides. Agreement between experimental results and theoretical models was very high, especially for small molecules. Finally, it is shown that this approach helps to predict the most appropriate set of conditions in HILIC x RPLC, depending on the compounds to be separated.


Assuntos
Cromatografia de Fase Reversa , Peptídeos , Solventes/química , Cromatografia de Fase Reversa/métodos , Modelos Teóricos , Interações Hidrofóbicas e Hidrofílicas
11.
Bioanalysis ; 16(5): 305-317, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334103

RESUMO

Background: The fully phosphorothioate-modified oligonucleotide (OGN) nusinersen has low ionization efficiency in the negative ion mode, resulting in a low mass spectrometry response. There have been no relevant reports on developing a LC-MS method for the determination of nusinersen by optimizing mobile phase composition. Materials & methods: Mobile phase additives comprised of 15 mM triethylamine/25 mM 1,1,1,3,3,3-hexafluoro-2-propanol with a pH of 9.6. Nusinersen was extracted from plasma using Oasis® HLB solid-phase extraction (Waters, MA, USA). Results & conclusion: By adjusting the pH of the mobile phase to 9.6 by optimizing the type and concentration of ion-pair reagents, a high mass spectrometry response was obtained. The developed method was applied to nusinersen and met the requirements for the pharmacokinetic study of nusinersen in rabbits.


Assuntos
Cromatografia de Fase Reversa , Oligonucleotídeos , Espectrometria de Massas em Tandem , Animais , Coelhos , Espectrometria de Massas em Tandem/métodos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Oligonucleotídeos Fosforotioatos , Indicadores e Reagentes , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão/métodos
12.
Artigo em Inglês | MEDLINE | ID: mdl-38387340

RESUMO

Antibody drug conjugates (ADCs) are an increasingly important therapeutic class of molecules for the treatment of cancer. Average drug-to-antibody ratio (DAR) and drug-load distribution are critical quality attributes of ADCs with the potential to impact efficacy and toxicity of the molecule and need to be analytically characterized and understood. Several platform methods including hydrophobic interaction chromatography (HIC) and native size-exclusion chromatography-mass spectrometry (nSEC-MS) have been developed for that purpose; however, each presents some limitations. In this work, we assessed a new sample preparation and buffer exchange platform coupled with high-resolution mass spectrometry for characterizing the drug-load and distribution of several cysteine-linked ADCs conjugated with a variety of chemotypes. Several criteria were evaluated during the optimization of the buffer exchange-mass spectrometry system performance and the data generated with the system were compared with results from nSEC-MS and HIC. The results indicated that the platform enables automated and high throughput quantitative DAR characterization for antibody-drug conjugates with high reproducibility and offers several key advantages over existing approaches that are used for chemotype-agnostic ADC characterization.


Assuntos
Imunoconjugados , Imunoconjugados/química , Reprodutibilidade dos Testes , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massas/métodos
13.
J Chromatogr A ; 1719: 464765, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38417374

RESUMO

This study explores the possibilities offered by temperature-responsive liquid chromatography (TRLC) based comprehensive 2-dimensional liquid chromatography in combination with reversed-phase liquid chromatography (RPLC) for the analysis of degradation products formed upon oxidative treatment of persistent organic pollutants, in this case exemplified through carbamazepine (CBZ). The TRLC×RPLC combination offers the possibility to overcome peak overlap and incomplete separation encountered in 1D approaches, while the transfer of the purely aqueous mobile phase leads to refocusing of all analytes on the second dimension column. Consequently, this allows for about method-development free and hence, easier LC×LC. The study focuses on the oxidative degradation of CBZ, a compound of environmental concern due to its persistence in water bodies. The TRLC×RPLC combination effectively separates and identifies CBZ and its degradation products, while offering improved selectivity over the individual TRLC or RPLC separations. This allows gathering more understanding of the degradation cascade and allows real-time monitoring of the appearance and disappearance of various degradation products. The compatibility with high-resolution mass spectrometry is last shown, enabling identification of 21 CBZ-related products, nine of which were not previously reported in CBZ degradation studies. The approach's simplicity, optimization-free aspects, and ease of use make it a promising tool for the analysis of degradation pathways in environmental contaminants.


Assuntos
Carbamazepina , Cromatografia de Fase Reversa , Temperatura , Cromatografia Líquida , Cromatografia de Fase Reversa/métodos , Espectrometria de Massas/métodos , Carbamazepina/análise , Benzodiazepinas , Estresse Oxidativo
14.
J Chromatogr A ; 1717: 464688, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38354595

RESUMO

Pentafluorophenyl (PFP) stationary phase is one of the most important phases after the C18 phase in terms of its applications. Three embedded polar groups (EPG)-containing stationary phases were newly synthesized to act the EPGs as additional interaction sites. The silica surface was initially modified with (3-aminopropyl)trimethoxysilane (APS). The APS-modified silicas were coupled with 2,3,4,5,6-pentafluorobenzoic acid, 2,3,4,5,6-pentafluorophenylacetic acid, and 2,3,4,5,6-pentafluoro-anilino(oxo)acetic acid to obtain Sil-PFP-BA, Sil-PFP-AA, and Sil-PFP-AN phases, respectively. The new phases were characterized by elemental analysis, ATR-FTIR, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The phases were evaluated with the Tanaka and Neue tests in reversed-phase liquid chromatography (RPLC). In addition, they were characterized as hydrophilic phases by the Tanaka test protocol used in hydrophilic interaction chromatography (HILIC) separation mode. The Sil-PFP-AA phase showed the highest molecular shape selectivity in RPLC, while Sil-PFP-AN achieved the highest separability in HILIC compared to the commercial PFP reference column. The Sil-PFP-AA phase was successfully applied for the analysis of capsaicinoids from real samples of fresh chili peppers (Capsicum spp.) in RPLC and the Sil-PFP-AN phase for vitamin C (ascorbic acid) in HILIC.


Assuntos
Cromatografia de Fase Reversa , Dióxido de Silício , Cromatografia de Fase Reversa/métodos , Dióxido de Silício/química , Vitaminas , Interações Hidrofóbicas e Hidrofílicas
15.
J Agric Food Chem ; 72(2): 1339-1353, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38183657

RESUMO

Two offline multidimensional chromatography/high-resolution mass spectrometry systems (method 1: fractionation and online two-dimensional liquid chromatography, 2D-LC; method 2: fractionation and offline 2D-LC) were established to characterize the metabolites simultaneously from three Glycyrrhiza species. Ion exchange chromatography in the first-dimensional (1D) separation was well fractionated between the acidic (mainly triterpenoids) and weakly acidic components (flavonoids). These obtained subsamples got sophisticated separation by the second (2D) and third dimension (3D) of chromatography either by online reversed-phase chromatography × reversed-phase chromatography (RPC × RPC) or offline hydrophilic interaction chromatography × RPC (HILIC × RPC). Orthogonality for the 2D/3D separations reached 0.73 for method 1 and 0.81 for method 2, respectively. We could characterize 1097 compounds from three Glycyrrhiza species based on an in-house library and 33 reference standards, involving 618 by method 1 and 668 by method 2, respectively. They exhibited a differentiated performance and complementarity in identifying the multiple subclasses of Glycyrrhiza components.


Assuntos
Cromatografia de Fase Reversa , Glycyrrhiza , Espectrometria de Massas , Cromatografia de Fase Reversa/métodos , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Interações Hidrofóbicas e Hidrofílicas
16.
J Chromatogr A ; 1715: 464604, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176351

RESUMO

G-quadruplexes (G4s) play an important role in a variety of biological processes and have extensive application prospects. Due to the significance of G4s in physiology and biosensing, studies on G4s have attracted much attention, stimulating the development or improvement of methods for G4 structures and polymorphism analysis. In this work, ionic liquids (ILs) were involved as mobile phase additives in reversed-phase high performance liquid chromatography (RP-HPLC) to analyse G4s with various conformations for the first time. How ILs affected the retention behaviors of G4s was investigated comprehensively. It was found that the addition of ILs markedly enhanced G4 retention, along with obvious amelioration on chromatographic peak shapes and separation. The influence of pH of mobile phase and types of ILs were also included in order to acquire an in-depth understanding. It appeared that the effect of ILs on G4 retention behaviors was the result of a combination of various interactions between G4s with the hydrophobic stationary phase and with the IL-containing mobile phase, where ion pair mechanism and enhanced hydrophobic interaction dominated. The findings of this work revealed that ILs could effectively improve the separation of G4s in RP-HPLC, which was conducive to G4 structural analysis, especially for G4s polymorphism elucidation.


Assuntos
Quadruplex G , Líquidos Iônicos , Cromatografia Líquida de Alta Pressão/métodos , Líquidos Iônicos/química , Cromatografia de Fase Reversa/métodos
17.
J Chromatogr A ; 1715: 464629, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38183782

RESUMO

Rosin-based chromatographic columns are widely used for separation purposes, but, to date, their phase ratios (Φ) have been imprecisely measured. This affects the understanding of their separation mechanism and the calculation of related thermodynamic parameters. In this study, a stationary phase was synthesized by bonding dehydroabietic acid (DA) to silica gel (Si-DO) and applied for reversed-phase liquid chromatography. The distribution coefficient (Kdm) of methyl dehydroabietate (MD), which has the same structure as the bonded phase of Si-DO, was used as a surrogate for the determination of the equilibrium coefficient (K) of Si-DO, and the Kdm values of MD in different mobile phases were measured and compared with the K values of Si-DO. It was found that the phase ratio of Si-DO varied with mobile phase composition and temperature, as shown by the Φ values: 0.039-0.122 for the methanol/water system and 0.051-0.116 for the acetonitrile/water system; in addition, the a indices were 0.552-0.757 and 0.564-0.674, respectively. The Kdm of MD was closer to the K of Si-DO than those of other surrogate models, including the octanol-water and octane-mobile phase partition coefficients. In addition, the thermodynamic parameters (ΔG°, ΔH°, and ΔS°) of n-alkylbenzenes on Si-DO were negative, indicating a spontaneous and enthalpy-driven separation process. Overall, the phase ratio of rosin-based columns is crucial for accurate thermodynamic analysis and interpretation of the separation mechanism. Finally, the MD surrogate model allows the estimation of phase ratio of Si-DO and other similar columns, providing a novel method for measuring the phase ratio of rosin-based columns and providing a validated concept and methodology for determining the phase ratios of HPLC columns.


Assuntos
Metanol , Dióxido de Silício , Dióxido de Silício/química , Termodinâmica , Metanol/química , Água/química , Cromatografia de Fase Reversa/métodos , Cromatografia Líquida de Alta Pressão/métodos
18.
J Chromatogr A ; 1716: 464639, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38217960

RESUMO

Except for alkanes, most organic compounds are hydrogen-bond bases. The B° descriptor of the solvation parameter model provides a convenient measure of the effective (or summation) hydrogen-bond basicity of organic compounds. A fast and convenient method to assign the B° descriptor is required to support studies of hydrogen-bonding in separation systems. A two-column system with acetonitrile-water mobile phase compositions and the measurement of up to eleven isocratic retention factors is proposed for this purpose. Several reversed-phase column chemistries and mobile phases were evaluated with the two-column system consisting of a pentafluorophenylpropylsiloxane-bonded and octadecylsiloxane-bonded silica columns recommended for this purpose. To assess the accuracy of the method values for B° were taken from the Wayne State University (WSU) compound descriptor database, which were assigned using conventional multi-technique methods and large datasets. The two-column systems provided an unbiased assignment of B° with an average deviation of 0.008 and an average absolute deviation of 0.021 compared with the target value for 55 varied compounds. The two-column system is unsuitable for assigning the other descriptors used in the solvation parameter model and results in erroneous assignments of B° for nitrogen-containing compounds capable of electrostatic interactions on silica-based reversed-phase columns.


Assuntos
Cromatografia de Fase Reversa , Água , Humanos , Cromatografia de Fase Reversa/métodos , Água/química , Bases de Dados Factuais , Dióxido de Silício/química , Indicadores e Reagentes , Compostos Orgânicos , Hidrogênio
19.
J Chromatogr A ; 1713: 464530, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38035518

RESUMO

Preparative liquid chromatography in reversed phase conditions (RPLC) is the most common approach adopted in the downstream processing for the purification of therapeutic peptides at industrial level. Due to the strict requirements on the quality imposed by the Regulatory Agencies, routinary methods based on the use of aqueous buffers and acetonitrile (ACN) as organic modifier are commonly used, where ACN is practically the only available choice for the purification of peptide derivatives. However, ACN is known to suffers of many shortcomings, such as drastic shortage in the market, high costs and, most importantly, it shows unwanted toxicity for human health and environment, which led it among the less environmentally friendly ones. For this reason, the selection of a suitable alternative becomes crucial for the sustainable downstream processing of peptides and biopharmaceuticals in general. In this paper, a promising green solvent, namely dimethyl carbonate (DMC) has been used for the separation of a peptide not only in linear conditions but also for its purification through non-linear overloaded chromatography. The performance of the process has been compared to that achievable with the common method where ACN is used as organic modifier and to that obtained with two additional solvents (namely ethanol and isopropanol), already used as greener alternatives to ACN. This proof-of-concept study showed that, thanks to its higher elution strength, DMC can be considered a green alternative to ACN, since it allows to reduce method duration while reaching good purities and recoveries. Indeed, at a target purity fixed to 98.5 %, DMC led to the best productivity with respect to all the other solvents tested, confirming its suitability as a sustainable alternative to ACN for the purification of complex biopharmaceutical products.


Assuntos
Cromatografia de Fase Reversa , Peptídeos , Humanos , Cromatografia de Fase Reversa/métodos , Solventes/química , Acetonitrilas/química , Cromatografia Líquida de Alta Pressão/métodos
20.
Talanta ; 269: 125378, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006732

RESUMO

Polymerized impurities in ß-lactam antibiotics can induce allergic reactions, which seriously threaten the health of patients. In order to study the polymerized impurities in cefoxitin sodium for injection, a novel approach based on the use of two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry (2D-LC-TOF MS) was applied. In the 1st dimension, high performance size exclusion chromatography (HPSEC) with a TSK-G2000SWxl column was employed. Column switching was applied for the desalination of the mobile phase used to separate polymerized impurities in the 1st dimension before they were transferred to the 2nd dimension which utilized reversed phase liquid chromatography (RP-LC) and TOF MS for further structural characterization. The structures of four polymerized impurities (which were all previously unknown) in cefoxitin sodium for injection were deduced based on the MS2 data. One novel polymerized impurity (PI-I), with 2H less than the molecular weight of two molecules of cefoxitin (Mr. 852.09), was found to be the most abundant (>50 %) in almost all the samples examined and could be regarded as the marker polymer of cefoxitin sodium for injection. This work also showed the great potential of the 2D-LC-TOF MS approach in structural characterization of unknown impurities separated with a mobile phase containing non-volatile phosphate in the 1st dimension.


Assuntos
Cefoxitina , Espectrometria de Massas por Ionização por Electrospray , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos , Contaminação de Medicamentos , Cromatografia de Fase Reversa/métodos , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...